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Abstract 
 
This article presents the assessment of early-age cracking risk in a mass concrete footing which is cast under different construction conditions. A finite element (FE) 
model was developed for predicting temperature, thermal stress, and cracking potential in a concrete footing at early age. Different scenarios of concrete placement 
were considered to investigate the effect of construction stages on thermal cracking potential in the concrete. The analysis method in this study can help engineers 
optimize construction schedules to control temperature and reduce cracking risk in mass concrete structures. 
 
Keywords: Maximum temperature, temperature difference, mass concrete, placing temperature, thermal crack 
 
Resumen 
 
Este artículo presenta la evaluación del riesgo de agrietamiento a temprana edad en una zapata de hormigón en masa que se vierte bajo diferentes condiciones de 
construcción. Se desarrolló un modelo de elementos finitos (EF) para predecir la temperatura, la tensión térmica y el potencial de agrietamiento en una zapata de 
hormigón a una temprana edad. Se consideraron diferentes escenarios de colocación del hormigón para investigar el efecto de las etapas de construcción sobre el 
potencial de agrietamiento térmico en el hormigón. El método de análisis de este estudio puede ayudar a los ingenieros a optimizar los programas de construcción 
para controlar la temperatura y reducir el riesgo de fisuración en las estructuras de hormigón en masa. 
 
Palabras clave: Temperatura máxima, diferencia de temperatura, hormigón en masa, temperatura de colocación, fisura térmica 
 

1. Introduction 
 

Concrete structures such as dams, bridge foundations, piers, and abutments are often classified as “mass 
concrete” (ACI, 2000), (ACI, 2005), (Do, 2014). When a larger volume of fresh concrete is poured, a larger 
amount of heat releases from the cement hydration process. The temperature at the inside portion of the concrete is 
increasing while that at the surface is quickly decreasing due to the exposure to the air. This creates a large 
temperature difference between the core and the outer surface of the concrete, leading to high tensile stresses that 
may exceed the concrete tensile strength, which will cause thermal cracks (ACI, 2005), (Tian et al., 2012), (Tía, 
2013), (Do, 2014). As long as cracking occurs in the concrete, it begins to affect the regular service and durability 
of the structure (Maruyama and Lura, 2019). Therefore, it is necessary to analyze the temperature and the 
corresponding stress fields in mass concrete structures for controlling temperature and preventing crack initiation in 
the early-age concrete (Nguyen and Luu, 2019), (Nguyen and Bui, 2019)  

There are different measures to reduce the temperature difference and thermal tensile stress in mass concrete 
such as use of lower cement content, use of aggregates (Klemczak et al., 2017) with a low coefficient of thermal 
expansion, casting concrete at night or in the early morning (Do, 2019), use of ice water, use of liquid nitrogen, pre-
cooling of mix constituents, post cooling using embedded pipes (Hong et al., 2017), (Nguyen et al., 2019), and use 
of insulating formwork  (Do, 2020), (Do et al., 2014a), (Do et al., 2013). Recently, laboratory (Zhao et al., 2019), 
(Do et al., 2019a) and field tests (Sargam et al., 2019) on early-age properties and thermal cracking of concrete 
have been also conducted to evaluate the cracking risk as well as the efficiencies of thermal control methods to 
control cracking in mass concrete. Each measure has both advantages and disadvantages depending on 
construction conditions. Among these measures, the control of concrete placement stages has not been widely used 
because of its costs. Hence, the aim of this study is to determine the temperature and thermal stress in a concrete 
footing cast in different placement conditions, thus suggesting the best scenario for reducing cracking risk in the 
structure. 
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2. Materials and Methods 
 
2.1. Description of the mass concrete footing 

In this study, an assumed 8-m×6-m×3-m concrete footing cast on soil is modeled. The modeled soil layer is 
assumed to have dimensions of 16-m×12-m×4-m. The concrete footing has two planes of symmetry, therefore only 
one-quarter of the footing is analyzed in order to reduce the computation time. The geometry and dimensions of the 
footing are shown in (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The ambient temperature can be simulated using the the (Equation 1) (Léger et al., 1993): 
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where Tenv is the ambient temperature (°C), and tday is the time (days). 
The temperature of the foundation under the concrete block is considered 25°C and the initial concrete 

temperature is assumed to be 30°C. The concrete mix proportion is shown in (Table 1) (Tia et al., 2016), (Do, 
2016). The adiabatic temperature rise for the concrete mix was tested and is shown in (Figure 2). The thermal and 
physical characteristics of the concrete and the soil foundation used in the analysis are presented in (Table 2).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Geometry and dimensions of footing (units: m). 
 

Concrete mixture 
Cement 
(kg/m3) 

Fly ash Fine Aggregate Coarse Aggregate 
w/cm  

(kg/m3) (kg/m3) (kg/m3) 

FB 290 156 642 1010 0.36 

 

Table 1. Mix design of concrete 
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The ambient temperature can be simulated using the the (Equation 1) (Léger et al., 1993): 
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Figure 3. Adiabatic temperature rise of concrete 
 

Property Concrete Foundation 

Thermal conductivity (W/m-°C) 2.90 1.98 

Specific heat capacity (J/kg-°C) 1047 850 

Density (kg/m3) 2259 2600 

Surface convection coefficient (W/m-°C) 
- Boundary 1 (free contact with air) 
- Boundary 2 (steel shuttering) 

 
10.00  
13.94 

 
14.00 

Coefficient of thermal expansion (/°C) 10-5 10-5 

Modulus of elasticity (N/m2) 2.7×1010 1.8×1010 

Poisson’s ratio 0.20 0.28 

Design compressive strength, (MPa) 38.00 - 
 

Table 2. Thermal and mechanical properties of concrete and soil foundation 
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where fsp(t) is the splitting tensile strength (MPa), E(t) is the Young’s modulus (MPa), and fc’ is the compressive 

strength (MPa). 
During the construction of the concrete footing, there are many factors that affect its thermal regime especially 

construction conditions. In this study, the calculation cases are assumed as follows (Figure 3) : 
Case 1: no construction joints are used, 
Case 2: the concrete is placed in two lifts (1.5 m each) and 5-day time interval for placing each lift, 
Case 3: the concrete is placed in three lifts (each lift 1 m) and 3-day time interval for placing each lift. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. FE basis for solving heat transfer problem 

The governing equation of a 3D unsteady heat transfer problem is based on the principle of energy 
conservation and Fourier's law of heat conduction and expressed in (Equation 4) (Cengel, 2014): 
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where t is the material temperature (°C), kx, ky, kz are the thermal conductivity coefficients of the material 
dependent on the temperature in the directions x, y and z, respectively, (W/m-°C), qv is the amount of heat released 
by internal sources (for example, exothermic heating) to a given moment in time (W/m3), c is specific heat (J/kg-°C), 
ρ is the density concrete (kg/m3), t is time (s). 

Two types of heat transfer boundary conditions are often used to analyze heat problems, which are expressed by 
(Equation 5) and (Equation 6) (Cengel, 2014): 

 
 

      ,= pT T                 (5) 
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where Tp is the temperature of the surface or foundation (°C), qv is the heat generated per unit volume (J/m3), h is 
the convective coefficient (W/m2-°C), Ts is the temperature of concrete or foundation (°C), Tf is the ambient 
temperature of the construction area (°C), lx, ly, and lz are the directional cosine of the surface according to the x, y 
and x axes, respectively.  

The problem of heat transfer is solved using the following matrix equation (Equation 7), (Zienkiewicz and 
Taylor, 2000): 

 
 

 

Figure 3. Calculation cases 
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In the problem of unstable heat transfer, it is necessary to analyze time into steps Δt as follows (Equation 8): 
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(Equation 9) is obtained by combining (Equation 7) and (Equation 8) and expressed as follows: 
 

 

      { } { }1
[ ][ ] [ ( ) ( ) ] [ ],n n
CK T T t T t Q
t −+ − =
Δ

                (9) 

 
 

where [K] is conductivity operator, [C] is capacity operator, and [Q] is heat load due to heat of hydration, Δt = 
Δtn-Δtn-1 is the time step. 

Solving (Equation 9) gives temperature fields in the concrete block at different time steps. 
Thermal stress in the concrete is determined by (Equation 10) (Zienkiewicz and Taylor, 2000): 
 

 

      { } { } { } { }[ ][ ] [ ]( ),thD B u Dσ = = ε − ε                 (10) 

 
 

where {σ} is the thermal stress vector, [D] is the elasticity matrix, [B] is the strain-displacement matrix, based 
on the element shape functions, {u} is the nodal displacement vector, {ε}= {εx εy εz εxy εyz εzx} is the strain vector, and 
{εth} is the thermal strain vector. The determination of temperature field in a mass concrete structure is a complex 
problem because it depends not only on the shape of the structure but also on other factors such as the internal 
heat generation, construction conditions, and the ambient temperature. In recent years, numerical approaches such 
as finite difference and FE methods have been widely used to predict temperature and stress fields in mass concrete 
structures (Nguyen et al., 2019), (Trong et al., 2019), (Aniskin et al., 2018), (Do et al., 2020), (Do et al., 2020a), 
(Do, 2013). In this study, the Midas/Civil software (MIDAS, 2011) based on the FE method was used to model the 
early-age behavior of the concrete footing depicted in (Figure 1). 
 
2.3. Crack index for evaluation of early-age cracking risk 

The prediction of crack formation in an early-age concrete structure plays an important role in minimizing the 
cracking risk and/or controlling crack growth. Criteria for evaluating early-age thermal cracking in concrete vary 
from country to country (Do et al, 2020b). In the United States, the ACI guidelines for assessing thermal cracking 
are not specified except for a recommended limiting value for the temperature difference between the core and the 
outer surface of the concrete. In other countries such as Korea and Japan, “crack index” is preferably used as a 
measure for assessing early-age cracking potential in the concrete. Crack index is determined by (Equation 11) 
(Kim, 2010), (Japan Concrete Institute, 2017): 
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where Ict is the crack index, ft(t) is the maximum tensile stress (MPa), and fsp(t) is the splitting tensile strength 

of the concrete (MPa). 
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The tendency of cracking can be evaluated using “crack index” based on engineering experience as 
introduced in (Table 3) and (Figure 4), (Kim, 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Analysis Results and Discussion  
 

The 3-D FE model was created using the Midas/Civil software. The element used in the thermal analysis is a 
3-D eight-node thermal solid element, which has one degree of freedom - temperature - at each node. The concrete 
and foundation in the stress analysis are modeled with a 3-D eight-node structural solid element, which is coupled 
with the 3-D thermal solid element. The temperature distribution obtained from the thermal analysis is then served 
as “thermal loading” in the stress calculation. The FE model geometry is depicted in (Figure 5). 
 
 
 
 
 
 
 
 
 

Figure 4. Relationship between cracking probability (%) and cracking index (Ict) 
 

 

Criteria Crack index 

No cracking Ict ≥ 1.5 

To minimize cracking 1.2 ≤ Ict ≤  1.5 

To minimize harmful cracking 0.7 ≤ Ict ≤  1.2 

 

Table 3. Thermal crack index (Ict) 
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The (Figure 6) shows the maximum temperature development at the center of the concrete footing under 
different construction cases. The maximum temperature decreases as the thickness of each lift decreases during the 
cement hydration. The maximum temperature value and time of occurrence are listed in (Table 3). The maximum 
temperatures at the concrete center are 75.52°C, 72.24°C, and 66.74°C in Cases 1, 2, and 3, respectively. It may 
be noted that in Case 3, the maximum temperature and temperature difference are the smallest compared to Cases 
1 and 2. After reaching the peak temperature, it begins to cool down. As predicted, the maximum temperature in 
the concrete will take a long time to decrease to a stable temperature. The crack index calculated at the surface is 
also listed in (Table 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Model geometry of 1/4 concrete footing  
 

 

Figure 6. Maximum temperature at the footing center in different cases  
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The (Figure 4) and (Table 4) together show that the probabilities of cracking in the concrete footing are 81%, 
50%, and 20%, in Cases 1, 2 and 3, respectively. It can be included that thermal cracking in the concrete in Case 3 
is not likely to occur at early ages, thus suggesting the proposed method of concrete pouring is effective. In other 
hand, other measures should still be taken in Cases 1 and 2 for controlling early-age cracking in the concrete. 

 

4. Conclusions 
 
• The 3-D FE model created in this study has identified the temperature and thermal stress fields in the concrete 

footing at early ages in different construction scenarios. The results show that the construction schedules 
significantly affect the temperature development and thermal cracking risk in the concrete. 
 

• When the concrete is cast with a maximum volume of 8-m×6-m×3-m in three lifts (as investigated in this 
study), thermal cracking will be not likely to occur. Thus, dividing large volume of mass concrete into 
reasonably smaller lifts can help minimize cracking risk in the concrete. 
 

• For future work, the numerically predicted results (temperature field and crack index) should be compared 
with experimental results. As long as the research results have been verified, they can be used in the 
sustainable design and construction of mass concrete structures. 
 

• The developed model can be used to perform thermal and stress analyses, and assess the risk of thermal 
cracking of other essential concrete members. The research methodology can help engineers/contractors 
optimize the construction stages and reduce the project schedule. 
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Case Max. temperature (°C) Temperature difference (°C) Ocurrence time (h) 

1 75.52 33.6 96 

2 72.24 27.78 192 

3 66.74 18.57 252 

 

Table 4. The maximum temperature and its occurrence time in different cases 
 

Case Crack index 
fsp(t) - tensile 

strength (MPa) 
ft (t) - tensile stress 

(MPa) 
Probability of crack 

occurrence (%) 

1 0.75 2.77 3.74 81 

2 0.91 2.98 3.28 50 

3 1.26 2.79 2.22 20 

 

Table 5. The thermal crack index with different construction cases 
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